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Problem 1. Find all positive integers n such that

1n + 2n + · · ·+ nn

is a prime number.

Marius Cerlat

Solution: The answer is n = 2 only.

Lemma: For k not divisible by p− 1, the sum 1k + 2k + . . . (p− 1)k is divisible by p.

Proof: Let g be a primitive root mod p. Rewriting the numbers in the sum as g, g2, . . . , gp−1,
we need to show that gk+g2k+ . . .+g(p−1)k is divisible by p. However, this is just a geometric

sum and is equal to gk g(p−1)k−1
gk−1

, which is clearly 0 (mod p) for k not divisible by p− 1.

Call the number in the problem Sn. Consider a prime p dividing n and split the n powers
in n

p
numbers of the form (kp+ 1)n + (kp+ 2)n + · · ·+ ((k + 1)p)n for k from 0 to n

p
− 1. It

is clear that all of these numbers are congruent mod p. Thus, if p2|n, as Sn is the sum of n
p

congruent numbers, it is divisible by p, thus for Sn to be prime, n must be square-free.

Also, clearly if 1n + 2n + . . . + (p − 1)n is divisible by p, Sn is also divisible by p, thus, by
the lemma, if p divides n, p− 1 also does. We will show that all numbers of this form are 1,
2, 2 · 3, 2 · 3 · 7 and 2 · 3 · 7 · 43.
Consider the smallest prime p1 dividing n, as p1 − 1 also divides n and is smaller than p1,
it is 1, so p1 = 2. Now, in the same way, considering p2 to be the second smallest prime,
p2 − 1 divides 2, so p2 = 3, and similarly p3 − 1 divides 6 so p3 = 7 and p4 − 1 divides 42 so
p4 = 43. Now, considering p5, we know that p5 − 1 divides 42 · 43. We will show that there
is no such prime.

Clearly, if it existed p5−1 would have to be divisible by 43, as else we would have had another
option for p4, also 2|p5−1, which implies 86|p5−1. As 7 ≡ 1 (mod 3) and 3|86+1 ⇒ 3|p5−1,
which implies 7|p5 − 1, which finally impies that 42 · 43 + 1 = 13 · 139 is prime, which is not
true.

Thus, we are left to check these values of n. For n equal to 6 and 42 · 43, Sn is divisible by
13. The former is true because 2S6 ≡ 16 + . . . + 126 ≡ 0 (mod 1)3 by the lemma, and the
latter is also true by the lemma, as 12 ∤ 42 · 43 and 13 | 42 · 43 + 1. We can easily see that
S42 is divisible by 5, so we are only left with n = 2.

Remark: We can do the same trick for any primes dividing n + 1 or 2n + 1 and get the
same result.
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Problem 2. Let △ABC be an acute triangle. Let I be its incenter, D = AI ∩ (ABC) and
E, F ∈ (BIC) such that A, E, F are collinear. Let Eb ∈ AB such that EEb = EbB. Ec is
defined similarly. Let K ∈ EbEc such that DK ∥ EF . Prove that AK ∩BC ∩DF ̸= ∅.

Pavel Ciurea
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Solution: Let αE = ∠CBE, βE = ∠ECB. Similarly define αF , βF .

Lemma: Eb, Ec, E are collinear.

Proof: ∠EbEB = ∠EBEb = ∠CBA− ∠CBE and similarly ∠CEEc = ∠ACB − ∠ECB so

∠EbEB +∠BEC +∠CEEc = ∠BEC + 180−∠BAC − 180 +∠BEC = 2∠BEC +∠BAC

But 2∠BEC = 2∠BIC = 180−∠BAC so ∠EbEB+∠BEC +∠CEEc = 180 so the lemma
is proven.

Ratio lemma: Let ABC be a triangle and D a point on BC. Then

BD

DC
=

AB sinBAD

AC sinCAD

Proof: By law of sines in △ABD and △ACD we have BD
sinBAD

= AB
sinADB

and CD
sinCAD

=
AC

sinADC
. Dividing these equalities yields the desired result.

We have that ∠EcDK = 90−∠(DK,CE) = 90−∠FEC = 90−αF and ∠KDEb = 90−βF

so by ratio lemma in △DEcEb:
EcK

KEb

=
DEc cosαF

DEb cos βF
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Also by ratio lemma in △AEbEc we get that

sinCAK

sinBAK
=

KEc

EbK

AEb

AEc

Let T = AK ∩BC. By ratio lemma in △ABC we get:

CT

TB
=

AC

AB

sinCAK

sinBAK

⇒ CT

BT
=

AC

AB
· DEc cosαF

DEb cos βF

· AEb

AEc

We can easily get that ∠EbDB = βE so ∠ADEb = C − βE. So by sine law in △AEbD we
get:

AEb

EbD
=

sin(C − βE)

sin A
2

Using the similar relation for Ec we get that:

CT

BT
=

AC

AB
· sin(C − βE)

sin(B − αE)
· cosαF

cos βF

Let X = AE ∩BC. Then by ratio lemma in △ABX and △ACX we get that:

AE

EX
=

AB sin(B − αE)

BX sinαE

=
AC sin(C − βE)

CX sin βE

So
CT

BT
=

CX

BX
· sin βE

sinαE

· cosαF

cos βF

Now let T ′ = FD ∩BC. We want to show that BT
CT

= BT ′

CT ′ .

We have that ∠CFD = 90− αF and ∠DFB = 90− βF so

CT ′

T ′B
=

FC cosαF

FB cos βF

But by ratio lemma in △BFC we have that

CX

BX
=

FC sinαE

FB sin βE

But now the equality BT
CT

= BT ′

CT ′ is obvious so the problem ends.
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Problem 3. A and B play a game on an n × n board. On each turn, A places a rook on
an empty square of the board, and B moves it to a neighboring square (two squares are
neighbors if they share a common edge). If all neighboring squares are occupied, the rook
remains in place. A wins when there are n rooks on the board that do not attack each other.
Determine for which constants c ∈ R there exists c0 ∈ R such that A can win in at most
cn+ c0 moves for all n ∈ N.

Pavel Ciurea

Solution: Answer: all c ≥ 3
2
.

We first show c = 3
2
is enough for A to win.

A puts a rook 4 times in each (4k + 2, 4k + 2) square. Then A puts a rook twice in each
(4k + 3, 4k + 3) square.

This way we create a rook-set for the square n− r4(n)×n− r4(n) where r4(n) is the residue
of n (mod 4). Now, in at most 15 moves we can guarantee that B leaves a rook in squares
(n− i, n− i) where i = 1, r4(n), thus creating a rook set in at most 3

2
n+ 15 moves.

We now show that c < 3
2
does not work.

For the sake of simplicity we first set some terminology. We call a cell occupied if there is a
rook on it. We call an odd column cell green and an even column cell white. We also call a
column bad if it contains exactly one rook. We say a rook r appeared from a cell c if it was
placed by A on c and call a cell’s (or rook’s) 1, 2, 3, and 4 neighbour the north, east, south
and west neighbour respectively. We say a rook (or cell) appeared from 1, 2, 3, and 4 if it
appeared from its 1, 2, 3 or 4 neighbour respectively.

We follow the following set of rules:

a) If we can move the rook on a green cell, we do so

b) If A plays on a white cell (x,y) and we are forced to move on a white cell then:

If (x− 1, y + 2) is occupied then we move the rook upwards. If it isn’t, but (x+ 1, y + 2) is
occupied then we move it downwards. If not, but (x− 1, y − 2) is occupied then we move it
upwards. If not, but (x + 1, y − 2) is occupied then we move it downwards. If even that is
not the case, we move it to a row that is either 0 or 1 (mod 4).

c) If A plays on a green cell (x, y) and we are forced to move on a white cell then: If at least
on of (x − 2, y − 1), and (x + 2, y − 1) is occupied then we move it to the left. If not, we
move it to the right.

Call R the rook-set formed at the end.

We show that we can assign each white cell ∈ R (that is not on the last or first 3 rows) an
occupied cell that is not in R. We do so inductively, starting from the last even column.

If we have another occupied cell on the same column as w we assign that cell to w. If not, we
show that we can assign a cell on an adjacent green column that shares exactly one corner
with w. We distinguish 5 cases (in all of them we will suppose for the sake of contradiction
that our hypothesis is false):
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Case 1: w appeared from w.

w cannot appear from w because that would imply that the cell directly above is occupied.

Case 2: w appeared from 2.

We must have rooks on both B and D. Suppose B is not in R. Then we assign B to w.

If B is also assigned to a cell w′, w′ must be on the column y+2. But since on column y we
have only one rook, by condition c cell C is occupied. Then B cannot be assigned to w′ so
this case is over.

We treat similarly the case where D ̸∈ R.

Case 3: w appeared from 3.

In this case, both D = (x + 1, y + 1) and F = (x + 1, y − 1) are occupied. If F ̸∈ R the we
can assign it to w. So we are left to treat the case F ∈ R.

D ̸∈ R so it must be assigned to w′ = (x+ 2, y+ 2). Then column y+ 2 is bad. Rule b then
implies that w appeared before w′.

w′ cannot appear from 4 by condition c. If w′ appeared from 1 or 2 then we can assign
(x+ 1, y + 3) to it. So w′ appeared from 3.

Let U = (x + 3, y + 1) and V = (x + 3, y + 3). If U ̸∈ R then we can assign it to w′ and
hence we can assign D to w. So U ∈ R. Then V ̸∈ R. If we cannot assign it to w′ then
column y + 4 is bad. Let w” be the cell that has V assigned.

By condition b w′ appeared before w”. Analyzing the cases as above, we get that w” must
appear from 3. But then condition b gives that both x + 2 and x + 4 ∈ {0, 1} (mod 4),
absurd.

So this case is proven

Case 4: w appeared from 4.

Both (x− 1, y− 1) and (x+ 1, y− 1) are occupied, are not assigned to any rook and cannot
be simultaneously in R, so we can assign one to w.

Case 5: w appeared from 1.

Analogous to case 3.

With this our induction is complete. So we have at least ⌊n
2
⌋ − 7 cells ̸∈ R so at least

n+ ⌊n
2
⌋ − 7 in total ⇒ c ≥ 3

2
so our proof is complete.
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