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Problem 1. Find all positive integers n such that

17’L + 2n + ... + nn
is a prime number.

MARIUS CERLAT

Solution: The answer is n = 2 only.

Lemma: For k not divisible by p — 1, the sum 1* + 2% + ... (p — 1)* is divisible by p.

Proof: Let ¢ be a primitive root mod p. Rewriting the numbers in the sum as ¢, ¢, ..., ¢" !,
we need to show that ¢* +¢%* +. ..+ ¢®~D* is divisible by p. However, this is just a geometric
sum and is equal to g* g(pf,:ikl_l, which is clearly 0 (mod p) for k not divisible by p — 1.

g

Call the number in the problem S,,. Consider a prime p dividing n and split the n powers
in % numbers of the form (kp +1)" + (kp+2)" +---+ ((k+ 1)p)" for k from 0 to & — 1. It
is clear that all of these numbers are congruent mod p. Thus, if p?|n, as S, is the sum of %
congruent numbers, it is divisible by p, thus for .S,, to be prime, n must be square-free.

Also, clearly if 1" 4+ 2" 4+ ... + (p — 1)" is divisible by p, S, is also divisible by p, thus, by
the lemma, if p divides n, p — 1 also does. We will show that all numbers of this form are 1,
2,2-3,2-3-7Tand 2-3-7-43.

Consider the smallest prime p; dividing n, as p; — 1 also divides n and is smaller than p;,
it is 1, so p; = 2. Now, in the same way, considering p, to be the second smallest prime,
po — 1 divides 2, so ps = 3, and similarly ps — 1 divides 6 so p3 = 7 and py — 1 divides 42 so
ps = 43. Now, considering ps, we know that ps — 1 divides 42 - 43. We will show that there
is no such prime.

Clearly, if it existed ps — 1 would have to be divisible by 43, as else we would have had another
option for py, also 2|ps—1, which implies 86|p; —1. As 7 =1 (mod 3) and 3|86+1 = 3|ps—1,
which implies 7|ps — 1, which finally impies that 42 -43 + 1 = 13- 139 is prime, which is not
true.

Thus, we are left to check these values of n. For n equal to 6 and 42 - 43, S,, is divisible by
13. The former is true because 255 = 1% + ... + 126 = 0 (mod 1)3 by the lemma, and the
latter is also true by the lemma, as 12142 -43 and 13 | 42 - 43 + 1. We can easily see that
Sy is divisible by 5, so we are only left with n = 2.

Remark: We can do the same trick for any primes dividing n + 1 or 2n + 1 and get the
same result.



Problem 2. Let AABC be an acute triangle. Let I be its incenter, D = AI N (ABC) and
E, F € (BIC) such that A, E, F are collinear. Let E, € AB such that FE, = E,B. E, is
defined similarly. Let K € EyE. such that DK || EF. Prove that AK N BC' N DF # ().

;
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Solution: Let ap = ZCBFE, fp = ZECB. Similarly define ap, fp.

PAVEL CIUREA

Lemma: F), E., E are collinear.

Proof: /ZE,EB = /EBE, = /ZCBA — ZCBE and similarly /CFE. = ZACB — Z/ECB so

LEWEB+ /BEC+ ZCEE.= /Z/BEC+ 180 — ZBAC — 180+ £/BEC = 2/BEC + ZBAC

But 2/BEC =2/BIC =180 — ZBAC so ZE,zEB+ Z/BEC + ZCEFE, = 180 so the lemma

is proven.

Ratio lemma: Let ABC be a triangle and D a point on BC'. Then

BD B ABsin BAD
DC  ACsinCAD

PI.;l%Of: By law of sines in AABD and AACD we have SinBBDAD = sinélBDB and sm%?w =

anc- Dividing these equalities yields the desired result.

We have that ZE.DK = 90— Z(DK,CE) =90—-/ZFFEC =90 — ap and ZKDE, = 90— fr

so by ratio lemma in ADgcEy:
E.K  DE.cosap

KE, DE,cosfr
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Also by ratio lemma in AAE,E,. we get that

sinCAK  KE.AE,
sin BAK  E,K AFE,

Let T = AK N BC'. By ratio lemma in AABC we get:

CT ACsinCAK
TB ABsin BAK

N CT AC DE.cosar AE,
BT AB DEycosfp AE,

We can easily get that ZE,DB = g so ZADE, = C' — [g. So by sine law in AAE,D we
get:
AE(, . SiIl(C - ﬁE)

EyD sin 4
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Using the similar relation for E, we get that:

CT _AC sin(C —Bg) cosar
BT  AB sin(B —ag) cosfp

Let X = AEN BC. Then by ratio lemma in AABX and AACX we get that:

AE  ABsin(B —ag) ACsin(C — Bg)
EX BX sinag N CX sin Bg

So
CT CX sinflp cosar

BT BX sinap  cos (g

Now let 7" = FD N BC. We want to show that % = g—g:.

We have that ZCFD =90 — ar and ZDFB = 90 — Sr so

CT"  FCcosap
T'B  FBcosfBp

But by ratio lemma in ABFC' we have that

CX FCsinag
BX  FBsinfg

BT’
cT’

But now the equality % = is obvious so the problem ends.



Problem 3. A and B play a game on an n X n board. On each turn, A places a rook on
an empty square of the board, and B moves it to a neighboring square (two squares are
neighbors if they share a common edge). If all neighboring squares are occupied, the rook
remains in place. A wins when there are n rooks on the board that do not attack each other.
Determine for which constants ¢ € R there exists ¢y € R such that A can win in at most
cn + ¢o moves for all n € N.

PAVEL CIUREA

Solution: Answer: all ¢ > %

We first show ¢ = % is enough for A to win.
A puts a rook 4 times in each (4k + 2,4k + 2) square. Then A puts a rook twice in each
(4k + 3,4k + 3) square.

This way we create a rook-set for the square n — ry(n) x n —ry(n) where r4(n) is the residue
of n (mod 4). Now, in at most 15 moves we can guarantee that B leaves a rook in squares
(n —i,n — i) where i = 1,74(n), thus creating a rook set in at most 3n + 15 moves.

We now show that ¢ < % does not work.

For the sake of simplicity we first set some terminology. We call a cell occupied if there is a
rook on it. We call an odd column cell green and an even column cell white. We also call a
column bad if it contains exactly one rook. We say a rook r appeared from a cell ¢ if it was
placed by A on ¢ and call a cell’s (or rook’s) 1, 2, 3, and 4 neighbour the north, east, south
and west neighbour respectively. We say a rook (or cell) appeared from 1, 2, 3, and 4 if it
appeared from its 1, 2, 3 or 4 neighbour respectively.

We follow the following set of rules:
a) If we can move the rook on a green cell, we do so
b) If A plays on a white cell (x,y) and we are forced to move on a white cell then:

If (x — 1,y + 2) is occupied then we move the rook upwards. If it isn’t, but (z + 1,y + 2) is
occupied then we move it downwards. If not, but (x — 1,y — 2) is occupied then we move it
upwards. If not, but (x + 1,y — 2) is occupied then we move it downwards. If even that is
not the case, we move it to a row that is either 0 or 1 (mod 4).

c) If A plays on a green cell (z,y) and we are forced to move on a white cell then: If at least
on of (x — 2,y — 1), and (z + 2,y — 1) is occupied then we move it to the left. If not, we
move it to the right.

Call R the rook-set formed at the end.

We show that we can assign each white cell € R (that is not on the last or first 3 rows) an
occupied cell that is not in R. We do so inductively, starting from the last even column.

If we have another occupied cell on the same column as w we assign that cell to w. If not, we
show that we can assign a cell on an adjacent green column that shares exactly one corner
with w. We distinguish 5 cases (in all of them we will suppose for the sake of contradiction
that our hypothesis is false):



Case 1: w appeared from w.

w cannot appear from w because that would imply that the cell directly above is occupied.
Case 2: w appeared from 2.

We must have rooks on both B and D. Suppose B is not in R. Then we assign B to w.

If B is also assigned to a cell w’, w’ must be on the column y + 2. But since on column y we
have only one rook, by condition ¢ cell C'is occupied. Then B cannot be assigned to w’ so
this case is over.

We treat similarly the case where D &€ R.
Case 3: w appeared from 3.

In this case, both D = (x + 1,y + 1) and F = (z + 1,y — 1) are occupied. If I’ ¢ R the we
can assign it to w. So we are left to treat the case F' € R.

D ¢ R so it must be assigned to w’ = (x + 2,y + 2). Then column y + 2 is bad. Rule b then
implies that w appeared before w’.

w’ cannot appear from 4 by condition ¢. If w’ appeared from 1 or 2 then we can assign
(x 4+ 1,y + 3) to it. So w’ appeared from 3.

Let U =(x+3,y+1)and V = (xr +3,y+3). If U ¢ R then we can assign it to w’ and
hence we can assign D to w. So U € R. Then V ¢ R. If we cannot assign it to w’ then
column y 4 4 is bad. Let w” be the cell that has V' assigned.

By condition b w’ appeared before w”. Analyzing the cases as above, we get that w” must
appear from 3. But then condition b gives that both z + 2 and x +4 € {0,1} (mod 4),
absurd.

So this case is proven
Case 4: w appeared from 4.

Both (x — 1,y — 1) and (z + 1,y — 1) are occupied, are not assigned to any rook and cannot
be simultaneously in R, so we can assign one to w.

Case 5: w appeared from 1.
Analogous to case 3.

With this our induction is complete. So we have at least |5| — 7 cells € R so at least
n+ 2] —7in total = ¢ > 3 so our proof is complete.



